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HYDRODYNAMIC CHARACTERISTICS OF PONTONS
PERTINENT TO A STUDY OF THEIR DESIGN AND OPERATION
BY

Thomas E. Stelsonit

SYNOPSIS

Seven model pontons were tested to determine their hydrodynamic

L

properties in vertical movement when partially submerged. The equi-

valent added weight due to the fluid was obtained by measuring
changes in the natural fundamental frequency of a supporting beam
for which the relationship between fundamental frequency and attached
center-weight was known. The results are in agreement with previous

tests and analyses where comparisons can be made.

The equivalent added weight was shown to have an important
effect on the vibrational properties of pontons. Other studies#t

have shown Liat Lhe eéquivalent addsd weight of thec pontone hae » gig-

———

nificant effect on the response of floating bridges %o transient loads.
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INTRODUCTION

This report describes a study conducted under contract Nonr-
760(03), Office on Naval Research, Department of the Navy. The
specific assignment under this contract was to conduct a basic ana-
lytical study of the design and performance of pontons. The study was
initiated June 1, 1953 and completed August 31, 1954.

The total problem of design, analysis, fabrication, transport,
assembly, testing, and operation of floating bridges was thoroughly
reviewed. The most serious gap 1n present knowledge seemed to be
the lack of information on the dymamic characteristics of the integral
system of ponton and superstructure. Pontons and superstructures
have usually been designed for hydrostatic forces under static loads.
Individual pontons have usually beer tested statically or in steady-
state motion as towed rafts. Ponton bridges have been field-tested
under moving loads, but the bulk of test data has often defied basic
analysis of all pertinent factors. In operation, obviously, the
forces, stresses, and behavior of floating bridges under the action

of a moving load are essentially transient or dynamic.
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The gap between static-design and dynamic-operation is usually
covered with an "impact factor." Thus, static stresses have been
increased perhaps fifteen percent to allow for additional stress
due to dynamic action. Use of a blanket "impact factor™ to ccver
ignorance of the real dynamic stresses is particularly undesirable
when saving in weight and material is of importance.

To analyze the design and performance of pontons the forces
acting on the ponton must be known. The first step in the present
study, therefore, was to determine forces acting on a ponton for all
typical conditions of vertical displacement, velocity, and acceleration.

Floating bridges are essentially a roadway or superstructure
resting on fioating supports or pontons whose reactions are primarily
a function of changes in vertical displacement. If the superstructure
is very flexible, the load is supported by only one or two pontons
nearest the load. A more rigid superstructure, however, transfers
part of the load to other more distant pontons. In common military
design about forty percent of the load may be supported by one or two
nearest pontons, and sixty percent by pontons farther away. The design
of a floating bridge requires the selection of a balanced system of
roadway flexibility and ponton capacity. As more of the load is
transferred to distant pontons, the ponton capacity can be reduced, but
roadway strength and rigidity must be increased. Because of the inter-
action of the ponton-superstructure system a study of the ponton alone
would be of little value. The dieplacements, velocities, and accelera-

tions in vertical movement are all affected Ly the system interaction.
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Thus, the entire ponton-superstructure system must be studied to
analyze the design and operation of pontons for both static and dy-
namic loads.

The behavior or operation of the floating bridges is further
complicated because snperstructure spans may be neither simply supported
nor "fully continuous” in the sense that angle changes are not continu-
ous linear functions of bending moments. Usually the connectiocns are
a combination of the two. Because of pin clearance for easy assembly,
joints may rotate freely until the clearance is taken-up. The joint
then locks and the structure is, in effect, continuous.

Knowledge of the behavior of the superstructure-substructure
system under the action of stationary and moving loads is essential
for the design and analysis of components of a floating bridge. Until
the forces acting on the structure are known, no accurate analysis
or design can be made, and the forces can only be obtained from a
study of the whole system.

Scope of the Present Study

This report aescribes a study of the hydrodynamic properties in
vertical movement of seven model pontons. The major part of the study
deals with the acceleration response or virtual mass of the ponton
since such information was almost totally lacking at the beginning of
the study. The displacement response or buoyancy forces were measured
and computed under static loads. The velocity response or drag forces
were evaluated by use of experimental coefficients obtained from studies

of damped vibration. The velocity response is less important than

st s . : " - = NI
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displacement or acceleration response since high velocities are not
attainable in the limited displacement (3 to 4 ft) of the ponton.

If the response of the ponton is known for all displacements,
velocities, and accelerations, the behavior of a floating bridge under
the action of moving vehicle loads can be computed provided the
structural properties of the bridge are known. To measure the accuracy
with which behavior of a floating bridge can be computed once displace-
ment-velocity-acceleration response is known, the model pontons were
subjected to known impulsive loadings. The displacement of the ponton
was then measured and compared with the computed displacement. Veri-
fication of the analysis with tests of specific models is sufficient
to commend the analytical methods for use in design. However, corres-
ponding field measurements on a prototype ponton would be desirable.

Once the analytical methods had been verified by model tests,
other informative studies were made. Computation of vibrational pro-

perties and resonant frequencies of the ponton are presented. Evalua-
tion of vehicle epuaed and dieplacement imnaect fantare are nreeontad

in another paper (11).%

Previous Study

In the analysic of potential flow in an ideal fluid of infinite
extent, at rest at infinity, through which a body moves in rectilinear
motion at a velocity, v, the kinetic energy of the fluid, T¢, is

T = 1/2 Cv2 (1)
where C is a constant factor--with dimensions lb-secz/ft--whose

#Bibliography appended
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value depends on the density of the fluid, the size and shape of the

body, and the direction of moiicn. Correspondingly, the kinetic

energy of the body, Ty, is

™ =1/2 m\_rz
u e

where m is the mass of the body (ratio of its weight to the accelera-

(2)

tion due to gravity in a vacuum.) The total kinetic energy, T, of

the body-fluid system is then

T="Tp+ Ty =1/2 (C+ m)v2

When the body changes velocity or accelerates, the time rate of

change in the kinetic energy of the system is then

dT = (C + m)v dv
dt dt

where t is time. Since the time rate of change in kinetic energy is

body,
Fv = dT = (C + m)v dv
dt dt
or

F=(C+m)dv
dt

Thus, the fluid increases the effective mass of a body from m to (C+m)

(3)

e N\
\4)

¢ the system by an external force F acling on the

(5)

(6)

The quantity (Ctm) is usually called the virtual mass and C is the

added or induced mass.

A more rigorous explanation of this phenomenon may be found in

treatises by Lamb (3) and Milne-Thomson (5).

Birkhoff (1) and Stelscn (12) have reviewed and discussed the

iy ranan

e At e oo Y Ty 1




: L. S-S

literature on virtual mass. A summary of general information will
not be repeated here since only a small part is applicable to a
study of the virtual mass of partially submerged bodies.

In 1929 Von Karman (14) published an analysis of the forces on
a wedge as it entered water. He assumed that one-half the added mass
obtained from a study of potential flow about an immersed lamina
would be anplicable to the immersing wedge. He neglected the surface
wave. Some experimental data supported his analytical results. Mayo (4)
Mitwitsky (6), and Pierson (9), have writren more on the problem of an
immersing wedge for application to seaplane floats during landings.

In 1930 Taylor (13) published results of his studies of two
dimensional potential flow about cylinders having two mutually perpen-
dicular axes of symmetry. He analyzed partially submerged bodies by
assuming the special conditions at the free surface to te satisfied
when an axis of symmetry coincided with the surface. He attempted to es-
timate the end effect in three dimensional flow by a comparison of
vilier shapes with ellipsoids for which the added mass is known.

Taylor has analyzed the flow around a cylinder of infinite length
(two dimensional flow) whose cross-section was formed by two identical
circular arcs. For movement Perpendicular to the common chord he
found the added mass, C, per unit length to be

C =77 (n? + 2)-2 EV- 7) cosec? 7 + cot Zf] (7)
3 n n n
in a fluid of unit density where 27is the external angle between tan-

n
gents to the two arcs at their points of intersection. One-half of
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this result is applicable to a partially submerged circular cylinder
when the free surface corresponds to the common chord. In Table 1

are some of the numerical results presented by Taylor.

TABLE 1

ADDED MASS--CIRCULAR ARCS

Chord

n 2T Radius length Thickness C

n
1 3609 2 0 3.14 (flat plate)
*6/3[6/5] 300 2 2 0.536 2.88
L/3 270 1.41 2 0.828 2.82
3/2 240 1.15 2 1.15 2.81
2 180 1 2 2 3.14 (circle)

For a cylinder whose cross-section is a rhombus, Taylor also ana-
lyzed the flow for movement in the direction of a diagonal. He found
the added mass per unit length, C, in a fluid of unit density to be

C

2n7 ~ s? sin 2n7r (8)

where

[(1/2 + n) ['Q - n)
217(3/2) (9)

17}
1]

and n7 is the angle between the diagonal in the direction of motion
and the sides. When nw = 45°, the rhombus is a square and the added mass
is

C = 0.594 b2 (10)

wliere b is the length of a diagonal. One-hzlf of this result is applicable

to a 90° wedge when the angle bisector is perpendicular to a free surface.

——— = Yy
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Riabouchinski (10) analyzed the flow about a cylinder having a
rectangular cross-section moving broadside-on. He found the added

mass, C, for a cylinder of unit length in a fluid of unit density to be

C= 97 (\_1)2 sinoC -4 d (11)
2 [E - (cos2ok)K] 2 T W

where «_1is a parameter such that

= E' - (sin? oL)K' (12)
E - (cos<o )X

d
w

The broadside width is w and the thickness is d. The terms K and E are
the complete elliptic integrals of the first and second kind and coso<,
sinx, are their respective moduli. The terms K' and E' are corresponding

functions of the complementary angle 90° -o< . In Table 2 some of the .

numerical results of Riesbouchinski's analysis are reproduced.
TABLE 2
ADDED MASS--RECTANGLES
" : .
™2
90° 0 1 (flat plate)
80° 0.025 1.05
70 0.111 [o.113] 1.16 [1.13]
60 0.298 [0.301] 1.29 [1.28]
50 0.676 [0.681] L2 |1.3]
[1,5 1.000 5 51] (square)
40 1478 [1.468] 1.65 [1.61]

The values in brackets were recomputed as part of the present study

according to Riabouchinski's formula. The values for oL = 45° were

B
*-a man . ——
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not originally presented. Since b = 1.41 w, the added mass when o =45°

is
¢ =7rw? (1.51) = 7k 2 (1.51) (13)
L L \1mm
C = 0.594 b2 (14)

Riabouchinski's value of C for broadside-on movement is identical
with the results of Taylor given in equation (10) for edge-on movement
of a cylinder with square cross-section is the same in all directions.

Browne, Moullin, and Perkins (2, 7, 8) published the results of
their study of vibrations of partially submerged bodies. Setting up
forced vibrations by an electromagnet, they measured the added mass of
rectangular and triangular prisms for various degrees of submergence.
Where comparison is possible, their results are in agreement with the
results of the present study.

Stelson (12) has shown that the added mass obtained from studies
of two- and three-dimensional potential flow in an ideal fluid of infi-
nite extent is identieal to two signifiecant places with the added mass
measured in a body of water with finite boundaries. Thus, the validity
of applying results from studies of potential flow has been established.
However, to obtain the added mass by a study of potential flow around
a ponton-shaped body would be extremely difficult if not impossible
because of the complex shape and because of a free surface. Since a
simple, accurate experimental method of determining added mass had
been previously developed at Carnegie Institute of Technology (12), the
added mass of the model pontons was measured experimentally so that the

study of the behavior of floating bridges could proceed.
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EXPEHIMENTS

Method

The equivalent added weight was determined by measuring the change in
naliaesl Sesdementoll frocubies of & freely vivrallng sveel peam wnich sup-
ported the partially submerged pontons. The relationships between the weight
attached at the center and the frequency* of the beams were measured. The
water around a ponton attached to the beam would then have the same effect
on the beam frequency as would a certain attached weight in air. The
equivalent added weight due to the water is then equal to the attached
weight 1n air that causes the same change in beam frequency since their
effects are the same.

Apparatus

The tests were made in three long, water-tight flumes. One flume
was 18 in. wide having glass walls 0.5 in. thick and a concrete bottom.
The second was 36 in. wide having walls and bottom of 3/1é-in. steel plate
stiffeneu by additional heavy steel members. The third flume was 58 in. wide
having wal®s and bottom of concrete. The pontons were always tested with
their longitudinal axes in the center of the flume parallel to the walls.

Fig 1 shows a sketch of the ponton attached to a beam in the 36-in.
flume. As shown in the sketch, the ends of the beam were attached to
the supports with plate fulcrums. Fig 2 shows a photograph of a ponton
mounted in the 58-in.flume.

Fig. 3 shows the relationships between frequency for the vertical
vibration of the test beams and the added weight in air attached to the

center of the beams.

*Hereafter in this report the term frequency will denote the natural
fundamental frequency for the free vibration of the beam-body-water system.

3
1
1
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2 PHOTOGRAPH OF THE APPARATUS IN THE 58-IN, FLUME
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The details of the model pontons are shown in Figs 4 and 5. The
ponton with raked bow and stern is a one-twelfth scale model of an
M-4 ponton borrowed from the Department of Military Science and Tactics,
Carnegie Institute of Technology. The pontons with semi-circular,
triangular, and rectangular cross-sections were made of smooth trans-
parent plastic 1/4-in. thick. The ends were water-proofed wood. The
pontons other than the model M-4 were 4 ft in length when first tested.
The lengths of the triangular and rectangular pontons were reduced to
2 fi and the added mass was measured again.

To measure the frequency of the beams, a small electromagnet was
fastened to the beams near their centers. A 1 1/2- volt dry cell battery
supplied a steady current to the magnet windings. A coil with rigid,
independent support was placed around the magnet. As the beam and magnet
vibrated, a signal proportional to the vertical velocity of the beam was
excited in the coil. The signal was amplified about 100,000 times and
recorded on an oscillograph having a chart speed of 12.5 c¢m per sec. 'the
frecuencv was obtained bv measuring the chart leneth of 30 to 50 cvcles
of signal. The damping in the water-ponton-beam system usually did not
reduce the vibration amplitude by one-half in 30 cycles. The frequency

was measured approximately to + 0.03 cycles per sec.

Procedure
The equivalent added weight was determined in the following way:

1. The ponton was submerged to the desired depth and attached
to the supporting beam.

2. The elevations of the water surface at . both ends of the
ponton were measured to + 0,0005 ft. If the two ends did
not have the same elevation, the apparatus was adjusted to
make them the same.
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3. When the water was quiet, the center of the beam was lightly
tapped with a finger. After the first vibration had died away,
the beam was tapped a second time.

4. The vertical velocity of the center of the beam was recorded,
and the “requency of the vibration was determined. The beam
was tapped twice as a check. The difference in the two
measurements of frcguency was never greater than 0.05 cycles
per sec when the apparatus was operating correctly.

5. The equivalent attached weight in air that gave the same
frequency was determined from the relationship show in Fig

6. The actual weight of the ponton was subtracted from the
equivalent attached weight tc give the equivalent added
weight due to the water.

7. A four- or six-pound weight was attached to the beam and the
test was repeated. The results of the first test were checked

in this way for possible mistakes in measurement or compu-
tation.

RESULTS AND ANALYSIS

Fig 6 shows the relationship between the frequency of vibration
of beam No. 2 and the depth of submergence of the attached model M-i
ponton. The tests were made in the 36-in. flume. Clearance between
the bottom of the ponton and the bottom of the flume is shown as a
parameter. Fig 7 shows the relationship between the equivalent added
weight and the submergence cf the M-4 model ponton. The equivalent
added weight was obtained from the data shown in Figs. 3 and 6.
Fig 8 shows the measured relationship between the submergence of
the M-4 model ponton and the displaced weight of water. Fig 9 shows
the relationship between the ratio of equivalent added weight to

displaced weight of water and the submergence of the ponton,
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The information shown in Fig 9 was obtained from Figs 7 and 8.

The final results as shown in Fig 9 are in a convenient form for
use in the analysis of the dynamic behavior of a ponton. Note that
the equivalent added weight may be several times the displaced weight
of water. When the bottom clearance is reduced below 4 inches, tﬂé
equivalent added weight is greatly increased. For bottom clearance
greater than 8 inches the effect of the bottom was negligible. Note

that the data for 8- and 12- inch clearance are the same,

R 56 by TR
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Flume Size

Fig 10 shows the effect of container size on the equivalent added
weight. In the 18- and 36-in. flumes the distance from the bottom of the
ponton to the bottom of the flume was 12 in. In the 58-in flume the
bottom clearance wes 36 in. These measurements show that the side clear-

ance has a sizable effect on the equivalent added weight.

Fonton Rigidity

The amplitude of vibration of the beam and test body is very small--
less than 0.0l inch a3 measured with a visual amplitude gage. Jecause
the movement is so small, *he rigidity of the ponton is importanu. If
the ponton were too flexible, the measured equivalent added weight would
be erroneously large. The equivalent added weight of the original model
pontons as shown in Figs 4 and 5 were determined; the pontons were re-
inforced with a 2 x 6 in. piece of fir wood; and the equivalent added
weight was determined again. In Fig 11 the results of the t ests on the
stiffened and unstiffened rectangular pontons are shown. The pontons as
originally constructed were too flexible. Hence, all the tests described
hereafter in this report refer to the stiffened pontons.

The stiffness is expressed as the product EI where E is the modu-
lus of elasticity; I, the moment of inertia about a horizental axis
through the centroid; and L, the half-length of the ponton. The modulus
of elasticity of lucite was taken as 407,000 1lbs per sq in. and of
fir wood, 1,800,000 1bs per sq in. A stiffness greater than approx-
imately 1000 1bs/in. is required to remove measurable error due to
flexibility. Note in Fig 11 that increasing the stiffness from 580 to

24,000 1lbs/in. redvced the equivalent added weight by only 6 per cent.
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Rectangular Pontons

Fig 12 shows the relationship between the frequency of beam No. 3
and <D/B, the ratio of twice the submerged depth to the width, for at-
tached rectangular pontons 2 and L ft long. 1In Fig 13 the equivalent added
weight is shown as a function of the ratio of 2D/B. The experimental
data of Browne, Moullin, and Perkins (2) are shown as corrected for dif-
ferent widths and lengths to a length of 48 in. and a width of 6 in.
The length was corrected in direct ratio. For example, the data for
the ponton 6 in. wide and 54 in. long were multiplied by the factor
48/5L. The width correction was as the square. For example, data for !
the ponton 9 in. wide and 108 in. long were multiplied by 62/92 = 36/81
to correct for width and 48/108 to correct for length.

The width correction is consistent with theory. The length correc-
tion, however, neglects the reduction in equivalent added weight caused

by the finite length.

To illustrate, suppose that the reduction in equivalent added weight

due to the finite length of the 24- and L& in. pontons 6 in. wide is ]
the same. Let this value be B. Let W be the equivalent added weight
of a 24-in. section of a very long ponton 6 in. wide. The equivalent
added weight of the finite 24 in. ponton is then W - B and of the 48 in.
ponton 2W - B. Applying a direct length correction ratio, however, one
has (W - B) (48/24) = 2W - 2B, Thus, twice the equivalent added weight
of a 24 in. ponton should be an end effect less than the equivalent
added weight of the 48 in. ponton.

In Fig 13 all data are less than the theoretical values for infinite
length because of end effect due to finite length. The longer cylinders

should more closely approach tne curve from theory. 1In this respect the
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EQUIVALENT ADDED WEIGHT [N LBS CCRRECTED TO 48" LENGTH, 6" WIDTH

50
40 /U_—O
30
'// £
2
9 PONTONS
WIDTH LENGTH EXPERIMENTER
® 6" @ THEORY
{0 o 6" 48" STELSON
o 8" 24" "
e 9" los" BROWNE, MOULLIN,
PERKINS
@ 8" 54" BROWNE, MOULLIN,
0 PERK!INS
0 0.5 .0 1.5 2.0

RATIO OF TWICE THE SUBMERGED DEPTH TO THE WIDTH (%?

FIG, 13 EQUIVALZNT ADDED WEIGHT AND SUBMERGENCE FOR
RECTANGULAR PONTONS
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data are consistent except for that on the 54-in. ponton by Browne,
Moullin, and Perkins. The theoretical relationship is that of
Riabouchinski (10).

Fig 14 shows the relationship between the ratio of equivalent added
weight to displaced weight and (2D/B), the ratio of twice the submerged

depth to the width for the same rectangular pontons.

Triangular Pontons

Fig. 15 shows the relationship between the frequency of beam No. 3
and the square of the submerged depth of pontons 24 and 48 in. long
having triangular cross-sections. As shown in Fig 4(b) the section is
symmetrical about a vertical centerline and has a 90° internal angle at
the bottom.

Fig. 16 shows the relationship between the equivalent added weight of
the triangular pontons and the square of the submerged depth. The data
are corrected to 48 in. length in direct ratio. The data of Browne,
Moullin, and Perkins for pontons 54 and 108 in. long are shown. The
straight line i the relationship obtained from theory for cylinders of
infinite lenginh with square cross-sections moving edge-on. Taylor (13)
found the added mass per unit length of such a body in a fluid of unit
density to be

C = 0.594 b2 (10)
where b is the length of diagonal. The equivalent added weight, W, of a
900 V-bottomed ponton 48 in. long in water is then
(0.594) ( 2D)2 (4) (62.4)
12
2.06 D2 (15)

W

where W is in 1bs, D is in in., 4 is the length in ft and 62.4 is the

density of water in 1lbs per cu ft. The experimental data for the

B <rh o
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10 j LENGTH EXPER IMENTER
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e 54" 1" 1" "
0 .
0 5 10 15 20 25 30
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FIG. 16 ENQUIVALENT ADDED WEIGHT AND SQUARE OF THE
SUBMERGED DEPTH FOR TRIANGULAR PONTONS
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longer pontons are very close to this theoretical relationship as shown

in Fig 16.

z
[

=1,73 D2 (16)

The ratio of equivalent added weight to displaced weight for very long
90° V-bottomed ponton would then be 2.06/1.73 = 1.19. Fig 17 shows

the measured ratio of equivalent added weight to displaced weight as

a function of submergence. The data for the longer pontons are very
close to the 1.19 value. The shorter pontons have lower ratios as would

be expected because of the proportionally greater end effect.

Semi-circular Fonton

Fig 18 shows the measured relationship between the frequency of
beam No. 3 and the depth of submergence of a semi-circular ponton
6 in. in diameter. Fig 19 shows the equivalent added weight as a func-
tion of the depth of submergence. The theoretical relationshin hetwean
equivalent added weight and depth of submergence for a 48 in. section
of a very long ponton is also shown in Fig 19. These values were obtained
from Taylor (13).

In Fig 20 the ratio of equivalent added weight to displaced weight is
shown as a function of the submerged depth for the semi-circular ponton.

Vibration and Added Mass

The added mass has a great influence on the resonant vibrational
frequencies of a ponton. The determination of the resonant frequencies

is important in the =safe operation of a floating bridge. Vehicle
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speeds and spacing should be specified to prevent resonance. The dyna-
mic stresses that accompany a resonant vibration may oe very much more
than the 15 per cent allowed for impact.

The ponton would be primarily subject to two kinds of vibration.

The first and simplest kind would be the vertical oscillation of the
whole ponton about its equilibrium position. This is similar to the
bobbing of a cerk floating in water. The second kind of vibration would
be the oscillation with two nodes such that the center of the ponton

is down when the two ends are up and vice versa.

At 0.5 in. freeboard, the equivalent added weight of the one-twelfth
scale model M-4 ponton is about 30 lbs. The corresponding quantities for
11d be (1/2) (12) = 6 in. freeboard and (30)(12)3 =
51,800 1bs equivalent added weight. If the weight in a vacuum is 3500 1bs,
the effective virtual weight is 51,800+3500 = 55,300 1bs. In the foot-
pound-second system the virtual inertis is 55,300/32.2 = 1720 lb-sec?/ft.
The displacement-force constant for the prototype M-4 ponten at 6 in.
freeboard is about 23,000 lbs/ft.

The bobbing frequency of a floating body may be computed from the

relationship,

f=1,k /2
5=7(=g) (17)

where f is the frequency in cycles/sec, k the unbalanced force-displace-

ment ratio in lbs/ft, and (m*C) is the total virtual inertia of the body

in lb-sec</ft. For the M-4 model ponton with 6~-in freeboard

1/2

£f= _1 23000 = 0.581 cycles/sec. (18
27 (1720) yeles/ (18)

The bobbing period would be 1/0.58) = 1.72 sec.

B ke
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The vibrational frequency of a free bar with two nodes may be

computed from the expression

£ =1 (22.4) [_ EI “]1/2
2 (m+C)L3 )

where E is the modulus of elasticity in 1bs/sq ft, I the moment of

(19)

inertia of the body about a horizontal transverse axis through the
centroid in fth, and L the length of the bar in ft. This expression
assumes the virtual inertia (mtC) to be uniformly distributed al ong
the length L.

For the M-4 ponton assume E = 10,000,000 1bs/sq in. = 1,440,000,000
1bs/sq ft; 1 = 60,000 (in.)% = 0.289 (ft)*. Let L = 56 ft, which is
shorter than the overall length to correct for the rounded bow. Then

1 (22.4) E},iqqoinmin«'ml(c.;mcq.l/Q £ oy

f = OO . 000 ZRG 2.\3\
PRl [T 1720 (56)7 e
= 4.18 cycles/sec (21)

for the two node vibration of the M-4 ponton with 6 in. freeboard. The
period of vibration would be 1/4.18 = 0.239 sec.

The attached mass of the superstructure would slightly reduce the
frequency of the two node vibration. The unbalanced buoyant forces
would slightly increase the frequency. Both of these factors are
neglected.

Neglecting the added inertia due to the water would have erroneous-
ly increased both these frequencies by a factor of (55,300/3500)1/2 = 3.98,.

Both frequencies of 0.581 and 4.18 cycles/sec. are in the range of
forcing vibration impulses from crossing vehicles and tread "knock."
The added inertia should certainly be considered in an analysis of design
and operation of floating bridges to prevent harmful vibration of th

pontor.,
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Operational Behavior and Added Mass

Romualdi (11) has analyzed the effect of virtual mass on the
operational behavior of a ponton bridge. He fo-ri that:

"Virtual mass (of the pontons) has a significant
effect on the response of floating bridges to
transient loads. The effect is more proncunced
than the effect of viscous damping. Morecver,
the omission of virtuzl mass in the analysis of
a floating bridge leads to displacements on the
unsafe side."

Romualdi (11) has compared the measured and computed displace-
ments of a ponton subjected to a known impulse. The measured and
computed displacements agree very closely when added inertia and
viscous drag are considered. If these quantities were neglected,

the calculated results would be greatly in error.

1¢ measured added ineriia can be applied to typical tran-

sient loading problems to determine ponton behavior. The results of

model tests can then be safely applied to problems in the design and

cperetion of the prototype structures.
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CONCLUSIONS

The measured added mass or inertia is reasonable and consistent
with the results of previous experiments and with analyses of
potential flow. The experimental method is simple and accurate.
The added inertia due to the fluid around a2 ponton may be many
times the inertia of the ponton as measured in a vacuum. The
equivalent added weight is usually greater and is often many times
the displaced weight of water.

The added inertia due to the water is of prime importance in a
study of the hydrodynamic properties of pontons. The added iner-
tia has a very important effect on the cpsrational characteristics
of floating bridges.

The resonant frequencies for the two simplest kinds of vibration
of a ponton are near the forcing frequencies of moving vehicle
loads and tread "knock." Neglecting the added inertia due to

the surrounding water makes the computed frequencies in error by

a lacior ol 4.0.
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